Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 12(1): 16, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263257

RESUMO

The human hypothalamus modulates mental health by balancing interactions between hormonal fluctuations and stress responses. Stress-induced progesterone release activates progesterone receptors (PR) in the human brain and triggers alterations in neuropeptides/neurotransmitters. As recent epidemiological studies have associated peripheral progesterone levels with suicide risks in humans, we mapped PR distribution in the human hypothalamus in relation to age and sex and characterized its (co-) expression in specific cell types. The infundibular nucleus (INF) appeared to be the primary hypothalamic structure via which progesterone modulates stress-related neural circuitry. An elevation of the number of pro-opiomelanocortin+ (POMC, an endogenous opioid precursor) neurons in the INF, which was due to a high proportion of POMC+ neurons that co-expressed PR, was related to suicide in patients with mood disorders (MD). MD donors who died of legal euthanasia were for the first time enrolled in a postmortem study to investigate the molecular signatures related to fatal suicidal ideations. They had a higher proportion of PR co-expressing POMC+ neurons than MD patients who died naturally. This indicates that the onset of endogenous opioid activation in MD with suicide tendency may be progesterone-associated. Our findings may have implications for users of progesterone-enriched contraceptives who also have MD and suicidal tendencies.


Assuntos
Receptores de Progesterona , Suicídio , Humanos , Progesterona , Analgésicos Opioides , Pró-Opiomelanocortina , Hipotálamo
2.
Neurobiol Dis ; 183: 106191, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37290577

RESUMO

The mood disorders major depressive disorder (MDD) and bipolar disorder (BD) are highly prevalent worldwide. Women are more vulnerable to these psychopathologies than men. The bed nucleus of the stria terminalis (BNST), the amygdala, and the hypothalamus are the crucial interconnected structures involved in the stress response. In mood disorders, stress systems in the brain are put into a higher gear. The BNST is implicated in mood, anxiety, and depression. The stress-related neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is highly abundant in the central BNST (cBNST). In this study, we investigated alterations in PACAP in the cBNST of patients with mood disorders. Immunohistochemical (IHC) staining of PACAP and in situ hybridization (ISH) of PACAP mRNA were performed on the cBNST of post-mortem human brain samples. Quantitative IHC revealed elevated PACAP levels in the cBNST in both mood disorders, MDD and BD, but only in men, not in women. The PACAP ISH was negative, indicating that PACAP is not produced in the cBNST. The results support the possibility that PACAP innervation of the cBNST plays a role in mood disorder pathophysiology in men.


Assuntos
Transtorno Depressivo Maior , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Núcleos Septais , Feminino , Humanos , Masculino , Transtornos do Humor , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Núcleos Septais/metabolismo , Estresse Psicológico
3.
Psychol Med ; 53(16): 7537-7549, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37226771

RESUMO

BACKGROUND: Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is involved in the stress response and may play a key role in mood disorders, but no information is available on PACAP for the human brain in relation to mood disorders. METHODS: PACAP-peptide levels were determined in a major stress-response site, the hypothalamic paraventricular nucleus (PVN), of people with major depressive disorder (MDD), bipolar disorder (BD) and of a unique cohort of Alzheimer's disease (AD) patients with and without depression, all with matched controls. The expression of PACAP-(Adcyap1mRNA) and PACAP-receptors was determined in the MDD and BD patients by qPCR in presumed target sites of PACAP in stress-related disorders, the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). RESULTS: PACAP cell bodies and/or fibres were localised throughout the hypothalamus with differences between immunocytochemistry and in situ hybridisation. In the controls, PACAP-immunoreactivity-(ir) in the PVN was higher in women than in men. PVN-PACAP-ir was higher in male BD compared to the matched male controls. In all AD patients, the PVN-PACAP-ir was lower compared to the controls, but higher in AD depressed patients compared to those without depression. There was a significant positive correlation between the Cornell depression score and PVN-PACAP-ir in all AD patients combined. In the ACC and DLPFC, alterations in mRNA expression of PACAP and its receptors were associated with mood disorders in a differential way depending on the type of mood disorder, suicide, and psychotic features. CONCLUSION: The results support the possibility that PACAP plays a role in mood disorder pathophysiology.


Assuntos
Doença de Alzheimer , Transtorno Bipolar , Transtorno Depressivo Maior , Feminino , Humanos , Masculino , Doença de Alzheimer/metabolismo , Transtorno Bipolar/metabolismo , Depressão , Transtorno Depressivo Maior/metabolismo , Hipotálamo/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Córtex Pré-Frontal/metabolismo
4.
Neurosci Bull ; 35(2): 205-215, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30706412

RESUMO

The locus coeruleus (LC) has been studied in major depressive disorder (MDD) and bipolar disorder (BD). A major problem of immunocytochemical studies in the human LC is interference with the staining of the immunocytochemical end-product by the omnipresent natural brown pigment neuromelanin. Here, we used a multispectral method to untangle the two colors: blue immunocytochemical staining and brown neuromelanin. We found significantly increased tyrosine hydroxylase (TH) in the LC of MDD patients-thus validating the method-but not in BD patients, and we did not find significant changes in the receptor tyrosine-protein kinase ErbB4 in the LC in MDD or BD patients. We observed clear co-localization of ErbB4, TH, and neuromelanin in the LC neurons. The different stress-related molecular changes in the LC may contribute to the different clinical symptoms in MDD and BD.


Assuntos
Transtorno Bipolar/metabolismo , Transtorno Depressivo Maior/metabolismo , Locus Cerúleo/metabolismo , Melaninas/metabolismo , Receptor ErbB-4/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Transtorno Bipolar/patologia , Transtorno Depressivo Maior/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica/métodos , Locus Cerúleo/patologia , Masculino , Microscopia/métodos , Pessoa de Meia-Idade , Neurônios/metabolismo , Neurônios/patologia , Sensibilidade e Especificidade , Análise Espectral/métodos
5.
J Affect Disord ; 148(2-3): 357-67, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23357659

RESUMO

BACKGROUND: The pineal hormone melatonin regulates circadian rhythms, largely by feedback on the central biological clock of the brain, the hypothalamic suprachiasmatic nucleus (SCN). This feedback is mediated by the melatonin receptors, melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2). The circadian system may play a role in the pathophysiology of mood disorders, and indeed, melatonin-receptor agonists are considered a potential therapy for depression. METHOD: In order to investigate melatonin receptors in the SCN during depression, and their relationship to the major neuropeptides in the SCN, vasopressin (AVP) and vasoactive intestinal peptide (VIP), we studied the SCN in 14 depressed patients (five major depression and nine bipolar disorder) and 14 matched controls by immunocytochemistry. RESULTS: We show here that hypothalamic MT2 receptor immunoreactivity was limited to SCN, the supraoptic nucleus and paraventricular nucleus. We found that numbers of MT1-immunoreactive (MT1-ir) cells and AVP and/or VIP-ir cells were increased in the central SCN in depression, but numbers of MT2-ir cells were not altered. Moreover, the number of MT1-ir cells, but not MT2-ir cells was negatively correlated with age at onset of depression, while positively correlated with disease duration. CONCLUSION AND LIMITATIONS: Although every post-mortem study has limitations, MT1 receptors appeared specifically increased in the SCN of depressed patients, and may increase during the course of the disease. These changes may be involved in the circadian disorders and contribute to the efficacy of MT agonists or melatonin in depression. Moreover, we suggest that melatonin receptor agonists for depression should be targeted towards the MT1 receptor selectively.


Assuntos
Transtorno Bipolar/metabolismo , Transtorno Depressivo Maior/metabolismo , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , Núcleo Supraquiasmático/metabolismo , Idoso , Idoso de 80 Anos ou mais , Transtorno Bipolar/fisiopatologia , Estudos de Casos e Controles , Ritmo Circadiano/fisiologia , Transtorno Depressivo Maior/fisiopatologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Melatonina/metabolismo , Pessoa de Meia-Idade , Peptídeo Intestinal Vasoativo/metabolismo , Vasopressinas/metabolismo
6.
Eur J Neurosci ; 28(8): 1467-79, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18973572

RESUMO

Even after reconstructive surgery, major functional impairments remain in the majority of patients with peripheral nerve injuries. The application of novel emerging therapeutic strategies, such as lentiviral (LV) vectors, may help to stimulate peripheral nerve regeneration at a molecular level. In the experiments described here, we examined the effect of LV vector-mediated overexpression of nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) on regeneration of the rat peripheral nerve in a transection/repair model in vivo. We showed that LV vectors can be used to locally elevate levels of NGF and GDNF in the injured rat peripheral nerve and this has profound and differential effects on regenerating sensory and motor neurons. For sensory neurons, increased levels of NGF and GDNF do not affect the number of regenerated neurons 1 cm distal to a lesion at 4 weeks post-lesion but do cause changes in the expression of markers for different populations of nociceptive neurons. These changes are accompanied by significant alterations in the recovery of nociceptive function. For motoneurons, overexpression of GDNF causes trapping of regenerating axons, impairing both long-distance axonal outgrowth and reinnervation of target muscles, whereas NGF has no effect on these parameters. These observations show the feasibility of combining surgical repair of the transected nerve with the application of viral vectors. Furthermore, they show a difference between the regenerative responses of motor and sensory neurons to locally increased levels of NGF and GDNF.


Assuntos
Vetores Genéticos/uso terapêutico , Lentivirus/genética , Fatores de Crescimento Neural/genética , Regeneração Nervosa/genética , Traumatismos dos Nervos Periféricos , Nervos Periféricos/metabolismo , Animais , Axônios/metabolismo , Biomarcadores/metabolismo , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Neurônios Motores/metabolismo , Fator de Crescimento Neural/genética , Proteínas do Tecido Nervoso/metabolismo , Nociceptores/metabolismo , Nervos Periféricos/citologia , Doenças do Sistema Nervoso Periférico/terapia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/genética , Células Receptoras Sensoriais/metabolismo , Resultado do Tratamento , Regulação para Cima/genética
7.
Mol Cell Neurosci ; 39(1): 105-17, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18585464

RESUMO

Traumatic avulsion of spinal nerve roots causes complete paralysis of the affected limb. Reimplantation of avulsed roots results in only limited functional recovery in humans, specifically of distal targets. Therefore, root avulsion causes serious and permanent disability. Here, we show in a rat model that lentiviral vector-mediated overexpression of glial cell line-derived neurotrophic factor (GDNF) in reimplanted nerve roots completely prevents motoneuron atrophy after ventral root avulsion and stimulates regeneration of axons into reimplanted roots. However, over the course of 16 weeks neuroma-like structures are formed in the reimplanted roots, and regenerating axons are trapped at sites with high levels of GDNF expression. A high local concentration of GDNF therefore impairs long distance regeneration. These observations show the feasibility of combining neurosurgical repair of avulsed roots with gene-therapeutic approaches. Our data also point to the importance of developing viral vectors that allow regulated expression of neurotrophic factors.


Assuntos
Vetores Genéticos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Lentivirus , Regeneração Nervosa/fisiologia , Radiculopatia/cirurgia , Raízes Nervosas Espinhais , Animais , Atrofia/prevenção & controle , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Meios de Cultivo Condicionados , Feminino , Gânglios Espinais/citologia , Terapia Genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Radiculopatia/patologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Células de Schwann/citologia , Células de Schwann/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Raízes Nervosas Espinhais/fisiologia , Raízes Nervosas Espinhais/cirurgia , Transgenes
8.
Neurobiol Aging ; 28(8): 1239-47, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16837102

RESUMO

The pineal hormone melatonin is involved in the regulation of circadian rhythms and feeds back to the central biological clock, the hypothalamic suprachiasmatic nucleus (SCN) via melatonin receptors. Supplementary melatonin is considered to be a potential treatment for aging and Alzheimer's disease (AD)-related circadian disorders. Here we investigated by immunocytochemistry the alterations of the MT1 melatonin receptor, the neuropeptides vasopressin (AVP) and vasoactive intestinal peptide (VIP) in the SCN during aging and AD. We found that the number and density of AVP/VIP-expressing neurons in the SCN did not change, but the number and density of MT1-expressing neurons in the SCN were decreased in aged controls compared to young controls. Furthermore, both MT1-expressing neurons and AVP/VIP-expressing neurons were strongly diminished in the last neuropathological stages of AD (Braak stages V-VI), but not in the earliest stages (Braak stages I-II), compared to aged controls (Braak stage 0). Our study suggests that the MT1-mediated effects of melatonin on the SCN are disturbed during aging and even more so in late stage AD, which may contribute to the clinical circadian disorders and to the efficacy of therapeutic melatonin administration under these conditions.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/patologia , Regulação da Expressão Gênica/fisiologia , Receptor MT1 de Melatonina/metabolismo , Núcleo Supraquiasmático/metabolismo , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Mudanças Depois da Morte , Receptor MT1 de Melatonina/genética , Estatísticas não Paramétricas , Núcleo Supraquiasmático/patologia , Peptídeo Intestinal Vasoativo/genética , Peptídeo Intestinal Vasoativo/metabolismo , Vasopressinas/genética , Vasopressinas/metabolismo
9.
J Neuropathol Exp Neurol ; 65(3): 257-66, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16651887

RESUMO

In this study, we examined the metabolic activity of nucleus basalis of Meynert (NBM) neurons in individuals clinically diagnosed with no cognitive impairment (NCI, n = 8), mild cognitive impairment (MCI, n = 9), and subjects with moderate Alzheimer disease (AD, n = 7). We used Golgi apparatus (GA) size as a measure of neuronal metabolic activity. Subjects with MCI showed increased NBM metabolic activity; they had significantly more neurons with larger GA size as compared with NCI and AD subjects. In contrast, more NBM neurons with extremely small GA sizes, indicating reduced metabolic activity, were seen in AD. When these cases were classified according to their AD pathology (Braak I-II, III-IV, or V-VI), Braak III-IV subjects showed significantly increased GA sizes, comparable with the increase in clinically diagnosed MCI, whereas in Braak V-VI, GA sizes were dramatically reduced. Of all MCI and NCI subjects with similar Braak III-IV pathology, the MCI subjects again had significantly larger GA sizes. The larger NBM neuronal GA size seen in MCI suggests increased metabolic activity, associated with both the clinical progression from NCI to MCI, and with the early stages of AD pathology.


Assuntos
Doença de Alzheimer , Núcleo Basal de Meynert/citologia , Transtornos Cognitivos , Complexo de Golgi/ultraestrutura , Neurônios/metabolismo , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Núcleo Basal de Meynert/metabolismo , Núcleo Basal de Meynert/patologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Progressão da Doença , Complexo de Golgi/metabolismo , Humanos , Plasticidade Neuronal/fisiologia , Neurônios/citologia
10.
J Clin Endocrinol Metab ; 90(4): 2412-9, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15671106

RESUMO

Melanin-concentrating hormone (MCH) exerts a positive regulation on appetite and binds to the G protein-coupled receptors, MCH1R and MCH2R. In rodents, MCH is produced by neurons in the lateral hypothalamus with projections to various hypothalamic and other brain sites. In the present study, MCH1R was shown, by immunocytochemistry, to be present in the human infundibular nucleus/median eminence, paraventricular nucleus, lateral hypothalamic area, and perifornical area, although in the latter two regions, only a few MCH1R-containing cells were found. In addition, MCH1R staining was found in nerve fibers in the periventricular nucleus, dorsomedial and ventromedial nucleus, suprachiasmatic nucleus, and tuberomammillary nucleus. A significant 1.6 times increase in the number of MCH1R cell body staining was found in the infundibular nucleus in postmortem brain material of cachectic patients, compared with matched controls, supporting a role for this receptor in energy homeostasis in the human.


Assuntos
Núcleo Arqueado do Hipotálamo/química , Caquexia/metabolismo , Receptores de Somatostatina/análise , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Hipotálamo/química , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Coelhos , Ratos
11.
Neurobiol Dis ; 15(2): 394-406, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15006710

RESUMO

Rubrospinal neurons (RSNs) undergo marked atrophy after cervical axotomy. This progressive atrophy may impair the regenerative capacity of RSNs in response to repair strategies that are targeted to promote rubrospinal tract regeneration. Here, we investigated whether we could achieve long-term rescue of RSNs from lesion-induced atrophy by adeno-associated viral (AAV) vector-mediated gene transfer of brain-derived neurotrophic factor (BDNF). We show for the first time that AAV vectors can be used for the persistent transduction of highly atrophic neurons in the red nucleus (RN) for up to 18 months after injury. Furthermore, BDNF gene transfer into the RN following spinal axotomy resulted in counteraction of atrophy in both the acute and chronic stage after injury. These novel findings demonstrate that a gene therapeutic approach can be used to reverse atrophy of lesioned CNS neurons for an extended period of time.


Assuntos
Atrofia/terapia , Fator Neurotrófico Derivado do Encéfalo/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Regeneração Nervosa/genética , Traumatismos da Medula Espinal/terapia , Doença Aguda , Animais , Atrofia/metabolismo , Atrofia/fisiopatologia , Axotomia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Doença Crônica , Dependovirus/genética , Modelos Animais de Doenças , Vias Eferentes/crescimento & desenvolvimento , Vias Eferentes/patologia , Vias Eferentes/fisiopatologia , Vetores Genéticos/uso terapêutico , Masculino , Regeneração Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Tempo de Reação/genética , Receptor trkB/metabolismo , Núcleo Rubro/crescimento & desenvolvimento , Núcleo Rubro/patologia , Núcleo Rubro/fisiopatologia , Degeneração Retrógrada/metabolismo , Degeneração Retrógrada/fisiopatologia , Degeneração Retrógrada/terapia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia
12.
Brain Res ; 988(1-2): 84-96, 2003 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-14519529

RESUMO

The human tuberomamillary nucleus (TMN), that is the sole source of histamine in the brain, is involved in arousal, learning and memory and is impaired in Alzheimer's disease (AD) as shown by the presence of cytoskeletal alterations, a reduction in the number of large neurons, a diminished neuronal metabolic activity and decreased histamine levels in the hypothalamus and cortex. Experimental data and the presence of sex hormone receptors suggest an important role of sex steroids in the regulation of the function of TMN neurons. Therefore, we investigated sex-, age- and Alzheimer-related changes in estrogen receptor alpha and beta (ERalpha and ERbeta) in the TMN. In addition, metabolic activity changes of TMN neurons were determined by measuring Golgi apparatus (GA) and cell size. In the present study, ERalpha immunocytochemical expression in AD patients did not differ from that in elderly controls. However, a larger amount of cytoplasmic ERbeta was found in the TMN cells of AD patients. Earlier studies, using the GA size as a parameter, have shown a clearly decreased metabolic activity in the TMN neurons in AD. In the present study, the size of the GA did not change during aging, indicating the absence of strong metabolic changes. Cell size of the TMN neurons appeared to increase during normal aging in men but not in women. Concluding, the enhanced cytoplasmic expression of ERbeta in the TMN may be involved in the diminished neuronal metabolism of these neurons in AD patients.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Região Hipotalâmica Lateral/metabolismo , Receptores de Estrogênio/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Feminino , Complexo de Golgi/metabolismo , Histamina/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Caracteres Sexuais , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA